ABSTRACT

One are the days when the school librarian was the austere custodian of the books. Twenty-first-century standards progressively call for librarians to step in as instructional leaders, connecting educators and students to materials, methods, and technology across the curriculum. In an age of increased accountability through never-ending standardized testing, as well as the implementation of Common Core standards, classroom teachers need all the support they can get. To add fuel to the fire, numerous states have reduced their budgets, leaving reading specialists and literacy coaches short in terms of time and materials. Students who once received differentiated instruction or reading intervention are overlooked or underserved. Where can teachers and reading specialists receive support to help close the achievement gap? Librarians to the rescue! Currently, school librarians are discovering yet another dynamic leadership and role: coteacher with classroom teachers and reading specialists in the library learning commons. This article explores strategies for librarians to implement differentiated instruction in collaboration with classroom teachers and reading specialists using a coteaching model.

Keywords: school librarians, literacy coaches, reading specialists

Librarians have long worn many hats that improve the learning of students in the school. These include instructional leader, technology specialist, promoter of reading initiatives, and guardian of books. Once again, librarians find themselves called upon to sport yet another: coteacher with classroom teachers and reading specialists. With a focus on preparing students to be college and career ready, the new Common Core State Standards (CCSS) ask students to grapple with complex grade-level texts and write research papers. Even at the kindergarten level, students engage in rigorous learning that asks them to participate in shared research and writing projects (National Governor’s Association, 2010). In this article we suggest that this rigorous learning requires teachers to join forces with others in the building to ensure student success. Thus the librarian, reading specialist, and classroom teacher form coteaching teams that address difficult concepts in such a way that the library becomes a learning commons (Loertscher, 2014). In this learning commons space, learners experience scaffolded support with print and differentiated instruction (DI) (Tomlinson, 1999) to address the achievement potential of students as they engage first-hand with the learning tasks set forth by the CCSS.

In the learning commons, the library functions as a dynamic arena where librarians, reading specialists, and classroom teachers bring individual talents to the instructional process in a coteaching team. The idea of the learning commons still allows for print books to play a vital part in instruction; however, digital technologies also play a large role. Due to the rigor of the CCSS, this idea of a learning commons comes just in time. For the past ten to fifteen years, administrators have continuously called upon librarians to take a larger role in the literacy arena (Robins & Antrim, 2012). Empowering Learners: Guidelines for School Library Media Programs (AASL, 2009a) contends that librarians are uniquely positioned to affect reading outcomes of students. In many school districts, administrators have asked librarians to provide collaborative support to classroom teachers to identify materials and methods to support struggling readers. While in other districts, administrators have asked librarians to lead response to intervention groups. While these efforts to suggest and provide materials hold potential, they fall short due to the fact that one individual has limited impact in comparison with what teams of librarians, reading specialists, and classroom teachers might achieve in a learning commons.
If the expectation for librarians extends beyond the support already provided to include coteaching while also attending to duties in the library, what should librarians do? Build upon what they already know! Librarians regularly assist with the analysis of assessment data to determine students’ and teachers’ needs, the integration of technology, the provision of resources, and the implementation of instruction in the physical library space. For decades, librarians’ instruction consisted of isolated units of study. These discrete units stand in stark contrast to Turner’s (1993) suggestions that librarians join forces with teachers to plan instruction that extends and enriches classroom curriculum. The American Association of School Librarians (2009) calls for librarians to collaborate with instructors to create relevant instruction that motivates students to be lifelong learners. While collaboration is not a new idea, what is new are the dynamics that make up the coteaching team and ways to facilitate the alliance.

Librarians support coteaching teams by serving as a connective agent with a physical and virtual venue: the learning commons. During the coteaching team’s planning phase, librarians supply a common virtual space within the learning commons that expedites planning. The virtual learning commons alleviates planning concerns of distant geographic spaces and incompatible release times. For example, Google Docs or other cloud computing tools are ideal as a virtual office for planning and creating instructional materials. Google Docs is free and enables the instructional team to plan with automatic changes saved to the drive—no need for confusing e-mail attachments. Google Docs allows users to keep calendars, create slide show presentations, store documents online, and develop videos. As a virtual office space, the cloud becomes an undeniable way to simplify challenges of collaborative planning.

After the librarian sets up the virtual learning commons, the coteaching team can coplan, codevelop and coassess, even if members are at opposite ends of the building with different planning times. Through this virtual planning space, librarians might oversee projects by organizing and analyzing data to determine materials matched to students’ interests, offer ideas that allow for differentiating within students’ interests, and physically support tangible suggestions about materials and technologies to implement DI. These insights provide an inroad into multiple areas of the curriculum that might otherwise be lost without the specialized knowledge the librarian brings to the coteaching team.

As students begin to carry out their learning, librarians can facilitate the physical learning commons with hands-on projects, literary materials, and instructional tools that bridge the curriculum with the students’ needs. For example, during the planning phase, the librarian might learn that the science focus for a given grading period addresses force, friction, and gravity. Within this broad topic, the librarian might pull together related texts and design web quests so students can explore various avenues as they narrow their reading to a topic of research. Through these virtual and physical means, librarians provide curriculum support that allows for DI within the learning commons.

READING SPECIALISTS’ ROLES IN COLLABORATIVE TEAMS IN THE LEARNING COMMONS

Reading specialists are uniquely trained to work with coteaching teams. In fact, the International Literacy Association’s (formerly International Reading Association; International Reading Association, 2010) Standards for Reading Professionals calls for candidates who wish to be reading specialists or literacy coaches to demonstrate successful collaboration skills. During the coteaching teams’ planning phase, the reading specialists can provide insight into the assessment data that might have been overlooked or offer to complete additional assessments that help the team determine the differentiated needs of learners.

When instructional teams analyze classroom data, they often use data from state-mandated or benchmark tests aligned with state curriculum standards. These assessment pieces show which students mastered specific standards, as well as which students did not master these standards. While this data provides an indication of what students need to learn and which students did or did not demonstrate proficiency, they fail to help teachers understand how students undergo the meaning-making process or why there might be a discrepancy between what is read and the meaning created by the learner. Reading specialists bring a deep and broad understanding about how to develop this insight. For example, it is important to determine whether readers do not comprehend texts due to problems with decoding, vocabulary, or lack of background knowledge (Anderson & Pearson, 1984). When students do not have background knowledge about a given concept, they often fail to comprehend the text. Therefore, it is important for readers, especially struggling readers, to notice when they do not have background knowledge about a concept read, as well as how to gain background knowledge about that topic. Reading specialists can complete assessments to determine where this discrepancy occurs, assess the instructional reading level that students are ready for, and design explicit instruction that helps learners grapple with texts.

Once the coteaching team determines the topic of study and the specific needs of learners, the reading specialists can meet with small groups to differentiate instruction so that each group’s needs are met. For example, if the coteaching team discovers that one group of fifth-grade students reads on a third-grade level and struggles with vocabulary, the reading specialist might work with them using third-grade-level books identified by the librarian. During this work, the reading specialist might show this group of learners how to use knowledge of Greek and Latin roots, as well as context, to determine word meanings. The reading specialist might ask students to independently read a piece of text selected with the help of the librarian and to flag words within that text using Post-It...
notes. After identifying these words, students would add them to a personal dictionary used later in literacy stations and during small groups with the reading specialist, librarian, or classroom teacher.

CLASSROOM TEACHERS' ROLE IN COTEACHING TEAMS IN THE LEARNING COMMONS

While the librarian has specialized knowledge of interesting materials that help students engage in the learning process and the reading specialist has specialized knowledge about determining students' instructional reading level, the classroom teacher holds specialized knowledge of the students engaged in the learning process. Additionally, the classroom teacher has an in-depth understanding about the curriculum content and the sequence in which the curriculum is to be taught. Therefore, the classroom teacher becomes the starting point for the planning process.

During the planning process, the classroom teacher would suggest an instructional topic to address. For example, a third-grade teacher might initiate the coteaching team by going to the librarian to request resources on force, friction, and gravity. The classroom teacher might share insight about concepts students struggled with in the past. The librarian might then suggest that they form a coteaching team with the reading specialist to address the topic and the needs of their students to ensure student success. At the request of the librarian and classroom teacher, the reading specialist would complete running records (Clay, 2000) to determine students' reading levels to form small guided reading groups. Yet when the reading specialist presents the groups formed solely on reading level, the classroom teacher offers insight about how to rearrange the groups based on behavior and personality. Additionally, knowing the students very well, the classroom teacher has great insight about the methods of differentiation that have proven successful with specific learners.

Not only does the classroom teacher have in-depth insight into the learners but also the curriculum. The curriculum consists of what is taught and tested. This includes anchor standards that address, for example, informational texts and magnetic interactions (NGSS Lead States, 2013). The classroom teacher can share information about what students have found difficult about the concept of magnetic interactions and informational texts, as well as successful and unsuccessful instructional techniques used in the past.

These instructional techniques consist of how a specific concept is taught. Classroom teachers are equipped with a plethora of instructional methods to address specific content. This knowledge comes from years of searching websites and teachers' manuals and sharing instructional techniques with colleagues, techniques that have been tested and adapted in actual classroom settings and with actual students. During the collaborative discussions, with three people present, individuals who make up the coteaching team might have insight about differentiated methods that might have been missed or are new to the literature. However, it should be noted that the classroom teacher is the linchpin of the coteaching team.

FROM VIRTUAL SPACE TO PHYSICAL SPACE IN THE LEARNING COMMONS

As the librarian, reading specialist, and classroom teacher initiate the coteaching team, they use the virtual learning commons to envision the learning that will occur. That vision is enacted in the physical learning commons. The coteaching team works within the library learning commons, dividing the library into distinct physical spaces dedicated to learner interest or profile, and the learning potential for students skyrocket. The librarian brings expertise about a variety of materials of interest to students. The reading specialist brings expertise about how to determine the specific instructional needs of students so that they can access materials needed. The classroom teacher brings expert knowledge of individual students and the ways they learn. In this physical space of the learning commons, the coteaching team provides the foundation to shift the learning, while the principles of differentiated learning become the engine that empowers expert learning. This differentiation can be based on interest, readiness, or learning profile.

DIFFERENTIATED LEARNING BASED ON INTEREST

Interest refers to subjects that the student wishes to discover. When a topic is of interest to the student, the format of the text appealing and relevant, interest and motivation increase (Guthrie, Wigfield, Mestala, & Cox, 1999). Students' interests vary in relation to the content area as well as outside interests. In classrooms, teachers often hold booktalks on several different novels and then allow students to form groups to discuss texts based on those interests. This opportunity to discuss texts affects motivation and comprehension alike (Guthrie et al., 1999; Nystrøm, 2006). Providing opportunities for students to share their thinking about texts is critical. Schallert and Reed (1997) note that talking with peers to negotiate an understanding of what was read is highly motivating. Not only are the students likely to become involved in the active interaction often associated with peer-led discussion groups, they may be more interested in what they are reading as they anticipate what will happen when they meet in groups to discuss what they have read. (p. 81)

As part of the coteaching team, classroom teachers structure student groups by a common text. For example, a teacher might provide six copies of four different titles that students choose from. In 2010 alone, 328,000 new titles were published (Frey & Fisher, 2013). It is impossible for classroom teachers to have an in-depth understanding about the most current, relevant, and interesting texts. Therefore, librarians contribute to differentiation based on interests by helping to select texts of interest to students. The reading specialist helps to design curriculum related to these texts.
DIFFERENTIATION BASED ON READINESS

Readiness refers to students’ abilities and background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge. CCSS place more emphasis on ability level than background knowledge when they urge teachers and librarians to use complex texts with all readers (National Governor’s Association, 2010). This emphasis on text complexity is based on research that shows that students who perform well on ACT questions from complex texts are more likely to experience success in college (ACT, 2006). Authors of the CCSS present three methods to gauge background knowledge.

DIFFERENTIATING BASED ON LEARNING PROFILE

A student’s learning profile consists of a learning style—that is, whether a child’s learning modality is visual, auditory, tactile, or kinesthetic. Based on these four elements, educators can modify instruction by content, process, product, or learning environment. While the literature is clear that differentiation by learner profile is a best practice, there are also references to the difficulties teachers experience in doing so (Boushey & Moser, 2006). This makes the idea of a coteaching team to differentiate based on learning profile expedient. We suggest that the best method to differentiate based on learning profile is through literacy centers.

Differentiation based on learning profile follows the work of Howard Gardner. Gardner (1983) suggests that there are eight kinds of intelligences: linguistic, musical, interpersonal, intrapersonal, kinesthetic, logical, nature, and spatial. While learners may possess multiple intelligences, they prefer different learning tasks and methods of expressing learning based on their preferred intelligence. Whereas one student might prefer to write an essay, another may choose to create a slide show. Yet another student would elect to carry out a science experiment. Gardner (1983) proposes that each of these preferences illustrates a different type of intelligence. The implication is that maximum learning occurs if a child’s strongest intelligence is targeted and employed. These principles, which serve as the basis for DI, are perfectly applied in the library commons through literacy stations, where each member of the coteaching team plays a distinctive role to facilitate DI.

LITERACY STATIONS IN THE LEARNING COMMONS

Literacy stations are physical spaces in the library learning commons designated for students to learn using DI. Literacy stations support students’ critical thinking, problem solving, research skills, and collaborative abilities. The stations do not require large...
portions of physical space; they are simply spaces dedicated to a particular learning style. The literacy stations could be tables, cozy rugs, or nooks. With the coteaching team, the instructional responsibilities vary depending on the plans created and agreed upon by the trio of instructors. In the coteaching model, the librarian would access resources, oversee the groups' progress, and assist with technology or research projects. The classroom teacher might monitor the activity of each group, ensuring that learners are on task and engaging in critical questioning to add depth to the learning. The reading specialist might work with small groups or individuals on vocabulary, phonics and decoding, comprehension, or writing. The literacy station concept is an attractive bonus to the reading specialist because he or she is able to extend support to the child right at the point of need in connection with the curriculum—no need for expensive, possibly ineffective, packaged materials.

We suggest utilizing at least five stations: computer, STEM, listening, writing, and visual arts. In the next sections, we will look at literacy stations planned and carried out by the coteaching team in the learning commons on the topic force, friction, and gravity.

Computer Station: The computer station appeals to students with a visual and auditory learning profile. Students at the computer station enrich twenty-first-century skills and demonstrate mastery of knowledge in the creation of a presentable product and utilization of research. CCSS place research at the heart of learning. In kindergarten, students are expected to participate in shared research and writing projects. Beginning in grade 3, students are expected to conduct their own research project (National Governors Association, 2010). Resources such as computers and texts are abundant and easily accessed in the library learning commons, allowing students to easily find a topic to research. The teacher supplies the necessary standards and objectives, while the librarian creates pathfinders, webquests, and other instructional tools for students to actively accomplish inquiry learning effectively. The reading specialist provides focused assistance with small groups or individual students.

For example, before a science class enters the learning commons, the librarian might prepare pathfinders on force, friction, and gravity. Pathfinders are guides or subject lists of related resources—print and web tools—associated with a particular topic of study (Church, 2006). Pathfinders support teachers by providing online guides to direct students to pertinent and high-quality resources. Pathfinders consist of a wide range of developmental reading levels and media formats, thereby aiding the reading specialist. Librarians can use such free publishing tools as Google Docs (https://docs.google.com/) or Weebly (www.weebly.com/) to create digital pathfinders. Wiki tools such as Wikispaces (https://www.wikispaces.com/) allow users to collaborate on pathfinders.

While the computer station is the perfect opportunity for students to conduct research, this station also affords students the chance to create slide shows, podcasts, wikis, blogs, or book trailers to teach others what they learned about force, friction, and gravity. The podcast is especially helpful for struggling readers. The librarian might ask students in upper elementary grades to record themselves reading a text that is then shared with kindergarten or first-grade classrooms to use in the listening station.

STEM Station: A science, technology, engineering, and math (STEM) station attracts students who are logic oriented. Such students display talent and interest in solving problems and puzzles. These children are typically strong in science and math content. In recent years, STEM has become an instructional focus (Cervetti, Pearson, Barber, Hiebert, & Bravo, 2007) in hopes of steering students toward careers in these fields. In the STEM station, children complete hands-on experiments, observing and recording their findings. In a STEM station on force, friction, and gravity, students might complete experiments such as laying wooden blocks on a board covered with sheets of sandpaper, cardboard, wax paper, glass, and wood. Before students tilt the board to slide the blocks, they make predictions about which block will slide the fastest once the board is tilted. Students measure and record how far each block moved on each surface.

The librarian assists with gathering and setup of materials. The librarian might also help students identify texts and websites that help students with the design process and to explain findings of experiments conducted. The reading specialist will supply assistance to help students make meaning with these texts and websites so that students have a deep understanding about their findings. This includes helping students understand the academic vocabulary and ways to scaffold comprehension using leveled texts. The classroom teacher also assists with the setup of materials and supervising and questioning students as they carry out the experiments.

Listening Station: The listening station attracts auditory learners by engaging them in sound. Generally, auditory learners show keen sensitivity to noise in their environments and may study better with music in the background. They typically display musical interest and often tap, drum, sing, or hum. Students who use a listening station reap the benefit of increased reading skills by employing sound with the written word. Struggling readers delight in books above their reading level in the listening station, making connections and responding to literature they cannot access on their own. Items in a listening station include a CD player or iPods with headphones. Parents might even donate iPods from home once they upgrade to newer devices. Audiobooks continue to grow in popularity and can be accessed through most public library systems. For example, students in the listening station might listen to the audio version of Forces and Motion (Graham, 2001) and then describe the concepts to a buddy.

The listening station does not require a great deal of work by the librarian, reading specialist, or classroom teacher. The librarian can help to locate digital stories with audio or books on tape. The classroom teacher or the reading specialist might manage the listening device, including the
volume, fast-forward, and rewind. Anyone on the coteaching team can create a podcast of an important text for students to engage with in the listening station.

Writing Station: A writing station affords the linguistically inclined learner the opportunity to wield words and language in the expression of thoughts about literature or informational text. Children read selections and react to reader-response activities associated with books, allowing readers to bring personalities, memories, experiences, and attitudes to the text. Writing in a journal is an exceptional activity for this station. Looking at our example of a class studying force, friction, and gravity, we might see journal writing or research prompts about specific texts supplied by the coteaching team. The research prompts are excellent for students' engagement in writing about informational texts. Examples of research prompts might be:

Explain why gravity is different on other planets (or the moon) as opposed to the earth.

Jane drops a baseball from her porch at 5 feet high. Joey drops a bowling ball from the same height. Which ball hits the ground first? Explain your answer.

John likes to race toy cars. If he wants to go the fastest speed possible, what surface would you recommend him to use? Explain why.

There are three cars driving around a race track. One car weighs 500 pounds, another weighs 800 pounds, and the third weighs 1,200 pounds. Which car will get to the finish line first (assuming they travel at the same speed)? Explain your answer.

Students in this station may gather recordings and results from the STEM station and write an article for publication on the library website. Children could write their own commercials for sports gear, incorporating the principals of force, friction, and gravity. More remedial linguistic activities could include the creation of illustrations and labels related to the unit of study.

This station requires a great deal of attention from the classroom teacher or the librarian. As a result of implementing hands-on experiments, the classroom teacher or librarian needs to set up the station and monitor students' work in this station, providing directions about the tasks to complete. Another option includes using a PowerPoint slide show to provide directions that students can follow on their own. Once the teacher determines the topic of study, the librarian can research relevant hands-on experiments. The reading specialist can help students with vocabulary addressed by the hands-on learning and comprehending the content.

Visual Arts Station: A visual arts station entreats students who think in terms of physical and geographical space. They relish learning through drawing, photography, clay, or other artistic mediums. A visual arts station includes crayons, pastels, and other unique media that allow students to express ideas in visual formats. For example, after reading Gravity Is a Mystery (Branley, 1986), the learner draws a scene or cartoon from the text using pertinent facts to accomplish the objectives of the lesson. He might explain how and why he chose the colors and shapes he did to represent his thoughts. A visual learner may cut out magazine pictures that depict the concepts of force, friction, and gravity. Another exercise at the visual arts station includes the creation of tens maps or graphs depicting ideas from informational text. Also, the students might take the results from the STEM station and graph the outcomes or design a poster using the results.

CONCLUSION

The librarian, who coteaches with the reading specialist and classroom teacher in the learning commons, is taking collaboration to a new and progressive level. In the coteaching model, each educator offers specialized expertise to augment instruction that distinguishes students’ learning styles, thereby maximizing reading and literacy achievement. Differentiating instruction in the learning commons need not entail major renovations or monumental changes. The stations outlined herein cater to a wide range of learning styles. Begin with small steps, such as one or two literacy stations. The first step is to initiate a conversation and engage all three members (the librarian, the reading specialist, and the classroom teacher) in the planning process. Once that planning process starts, the coteaching team quickly learns that three heads are better than one.

BIBLIOGRAPHY

Cervetti, G. N., Pearson, P. D., Barber, J., Hiebert, E. H., & Bravo, M. A. (2007). Integrating literacy and science: The research we have, the research we need. In M. Pressley, A. K. Billman, K. Perry, K. Refitt, & J. Reynolds (Eds.), Shaping literacy achievement (pp. 157-174). New York: Guilford.

FACING THE CHALLENGES

Crowder, Melanie. *Audacity*. Philomel, 2015. 400 p. $17.99. 9780399168994. Grades 7 up. Issues about workers' rights and women's roles blend with the story of labor leader Clara Lemlich in this verse novel. The fictionalized main character chafes under inequities, first in anti-Semitic Russia and then in the sweatshops of New York. Her courage in fighting for a better world while remaining loyal to her family creates an inspiring story, laced with lovely imagery about birds and fire.

Dessen, Sarah. *Saint Anything*. Viking, 2015. 432 p. $19.99. 9780451474704. Grades 8 up. Narrator Sydney’s wealthy family splinters when her charming but irresponsible older brother lands in prison. In contrast, Sydney’s new friend, Layla, draws closer to her family with challenges like her mother’s illness. As Sydney spends time with Layla and falls in love with Layla’s brother, she sees what she’s missing at home. A perceptive, engaging read.

Nielsen, Susin. *We Are All Made of Molecules*. Random House, 2015. 256 p. $16.99. 97803853496864. Grades 6-9. Stewart, 13, who lost his mother two years ago, misses her deeply. Now he and his kind father are moving in with Caroline, his father’s new love, and Caroline’s hostile daughter, Ashley. Chapters alternate between self-absorbed Ashley, who’s upset that her father’s gay, and complex Stewart, whose narrative is an unusually insightful exploration of grief and change.

